X-ray Dark Field Imaging

نویسندگان

  • Andreas KUPSCH
  • Manfred P. HENTSCHEL
  • Axel LANGE
  • Bernd R. MÜLLER
چکیده

A new kind of enhanced contrast X-ray imaging of weakly absorbing materials in dark field mode is presented. Samples such as plastics and biological tissue are a perpetual challenge for radiographic imaging. Recent innovative approaches such as Diffraction Enhanced Imaging (DEI), “phase contrast”, grating interferometry (Talbot-Lau), or Refraction Enhanced Imaging (REI) have in common that they yield enhanced contrast based on deflected X-rays. Here, we introduce a REI modification, which works with a slightly bent single crystal reflecting in Bragg geometry. The samples are placed upstream of the thin crystal within a parallel synchrotron beam. The crystal’s curvature creates a dark-field stripe in the transmission image, similar to the inverse of a Darwin-Prins rocking curve of plane crystals. The reflection condition is met better or worse as a steady function of incidence position. Refracted beam portions of sample interfaces appear bright on black stripes. The entire image is finally synthesized by multiple dark-field stripes. The technique is an alternative to the mentioned techniques. We demonstrate the technique’s advantage by examples of biological and technical microstructures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hard-X-ray dark-field imaging using a grating interferometer.

Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early sta...

متن کامل

Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging

In clinically established-absorption-based-biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which un...

متن کامل

Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography.

Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis...

متن کامل

Varying Collimation for Dark-Field Extraction

Although x-ray imaging is widely used in biomedical applications, biological soft tissues have small density changes, leading to low contrast resolution for attenuation-based x-ray imaging. Over the past years, x-ray small-angle scattering was studied as a new contrast mechanism to enhance subtle structural variation within the soft tissue. In this paper, we present a detection method to extrac...

متن کامل

Signal Decomposition for X-ray Dark-Field Imaging

Grating-based X-ray dark-field imaging is a new imaging modality. It allows the visualization of structures at micrometer scale due to small-angle scattering of the X-ray beam. However, reading darkfield images is challenging as absorption and edge-diffraction effects also contribute to the dark-field signal, without adding diagnostic value. In this paper, we present a novel--and to our knowled...

متن کامل

Energy weighted x-ray dark-field imaging.

The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016